Июль/Август 2014, том 6, номер 1

<<< Вернуться к содержанию

■ Оригинальные исследования

Майданник В.Г. Toll-подобные рецепторы и почки. 2014;Т6(1):98-108

Toll-подобные рецепторы и почки

Майданник В.Г.

Национальный медицинский университет имени А.А. Богомольца, Киев, Украина

■ Резюме:

Представлен анализ современных данных о семействе Toll-подобных рецепторов (TLRs), которые играют первостепенную роль в иммунной защите организма. TLRs участвуют в индукции и модуляции реакций врожденного и адаптивного иммунитета, выступая в роли их интеграторов. Показано, что различные типы TLRs локализуются в разных структурах нефрона. Значение различных типов TLR показано в развитии многих других заболеваний почек, включая пиелонефрит, острое повреждение почек, гломерулонефрит и другие. TLRs - идеальная молекулярная мишень для терапии многих заболеваний почек.

■ Литература:

1. Anders H.J., Banas B., Schlondorff D. Signaling dan- ger: Toll-like receptors and their potential roles in kid- ney disease. J Am Soc Nephrol. 2004;15:854-867.

2. Pawar R.D., Patole P.S., Wornle M., Anders H.J. Microbial nucleic acids pay a Toll in kidney disease. Am J Physiol Renal Physiol. 2006;291:F509-516.

3. Takeda K., Kaisho T., Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335-376.

3a. Nüsslein-Volhard C, Kluding H, J rgens G. Genes affect- ing the segmental subdivision of the Drosophila embryo. Cold Spring Harb Symp Quant Biol. 1985;50:145-154.

4. Lemaitre B., Nicolas E., Michaut L. et al. The dorsoven- tral regulatory gene cassette spatzle/Toll/cactus con- trols the potent antifungal response in Drosophila adults. Cell 1996; 86:973-983.

4а. Medzhitov R., Preston-Hurlburt P., Janeway C.A. A human homologue of the Drosophila Toll protein sig- nals activation of adaptive immunity. Nature 1997; 388:394-397.

5. Akira S., Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004; 4:499-511.

5a.Takeda K., Akira S. Toll-receptors in innate immunity. Int Immunol. 2005; 17(1):1-14.

6. O’Neill L.A., Bowie A.G. The family of five: TIR- domain-containing adaptors in Toll-like receptor signal- ling. Nat Rev Immunol 2007; 7:353-364.

7. Baeuerle P.A., Baltimore D. I kappa B: a specific inhibi- tor of the NF-kappa B transcription factor. Science 1988; 242:540-546.

8. Brown K., Gerstberger S., Carlson L. et al. Control of I kappa B-alpha proteolysis by site-specific, signal-in- duced phosphorylation. Science 1995; 267:1485- 1488.

9. Haziot A., Ferrero E., Kontgen F. et al. Resistance to endotoxin shock and reduced dissemination of gram- negative bacteria in CD14-deficient mice. Immunity 1996; 4:407-414.

10. Jiang Z., Georgel P., Du X. et al. CD14 is required for MyD88-independent LPS signaling. Nat Immunol 2005; 6:565-570.

11. El-Achkar T.M., Dagher P.C. Renal Toll-like receptors: recent advances and implications for disease. Nat Clin Pract Nephrol 2006; 2:568-581.

12. Pawar R.D., Patole P.S., Ellwart A. et al. Ligands to nucleic acid-specific toll-like receptors and the onset of lupus nephritis. J Am Soc Nephrol 2006; 17:3365- 3373.

13. Werts C., Tapping R.I., Mathison J.C. et al. Leptospiral lipopolysaccharide activates cells through a TLR2- dependent mechanism. Nat Immunol 2001; 2:346- 352.

14. Hirschfeld M., Weis J.J., Toshchakov V. et al. Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun 2001; 69:1477-1482.

15. Yang C.W., Hung C.C., Wu M.S. et al. Toll-like receptor 2 mediates early inflammation by leptospiral outer membrane proteins in proximal tubule cells. Kidney Int 2006; 69:815-22.

16. Nahori M.A., Fournie-Amazouz E., Que-Gewirth N.S. et al. Differential TLR recognition of leptospiral lipid A and lipopolysaccharide in murine and human cells. J Immunol 2005; 175:6022-6031.

17. Kim B.S., Lim S.W., Li C. et al. Ischemia-reperfusion injury activates innate immunity in rat kidneys. Transplantation 2005; 79:1370-1377.

18. Wyllie D.H., Kiss-Toth E., Visintin A. et al. Evidence for an accessory protein function for Toll-like receptor 1 in antibacterial responses. J Immunol 2000; 165:7125- 132.

19. Takeuchi O., Hoshino K., Akira S. Cutting edge: TLR2- deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol 2000; 165:5392-5396.

20. Leemans J.C., Stokman G., Claessen N. et al. Renalassociated TLR2 mediates ischemia/reperfusion injury in the kidney. J Clin Invest 2005; 115:2894-2903.

21. Shigeoka A.A., Holscher T.D., King A.J. et al. TLR2 is con-stitutively expressed within the kidney and participates in ischemic renal injury through both MyD88- dependent and -independent pathways. J Immunol 2007; 178:6252-6258.

22. Alexopoulou L., Holt A.C., Medzhitov R., Flavell R.A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001; 413:732-738.

23. Poltorak A., He X., Smirnova I. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998; 282:2085-2088.

24. Hagberg L., Hull R., Hull S. et al. Difference in susceptibility to gram-negative urinary tract infection between C3H/HeJ and C3H/HeN mice. Infect Immun 1984; 46:839-844.

25. Muzio M., Bosisio D., Polentarutti N. et al. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes. selective expression of TLR3 in den dritic cells. J Immunol 2000; 164:5998-6004.

26. Heinz S., Haehnel V., Karaghiosoff M. et al. Speciesspecific regulation of Toll-like receptor 3 genes in men and mice. J Biol Chem 2003; 278:21502-21509.

27. Patole P.S., Grone H.J., Segerer S. et al. Viral doublestranded RNA aggravates lupus nephritis through Tolllike receptor 3 on glomerular mesangial cells and antigen- presenting cells. J Am Soc Nephrol 2005; 16:1326-1338.

28. Qureshi S.T., Lariviere L., Leveque G. et al. Endotoxintolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 1999; 189:615-625.

29. Hoshino K., Takeuchi O., Kawai T. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps geneproduct. J Immunol 1999; 162:3749- 3752.

30. Jiang Q., Akashi S., Miyake K., Petty H.R. Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. J Immunol 2000; 165:3541-3544.

31. da Silva Correia J., Soldau K., Christen U. et al. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. transfer from CD14 to TLR4 and MD-2. J Biol Chem 2001; 276:21129-21135.

32. Akashi S., Shimazu R., Ogata H. et al. Cutting edge: cell surface expression and lipopolysaccharide signaling via the toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages. J Immunol 2000; 164:3471-3475.

33. Schromm A.B., Lien E., Henneke P. et al. Molecular genetic analysis of an endotox-in nonresponder mutant cell line: a point mutation in a conserved region of MD-2 abolishes endotoxin-induced signaling. J Exp Med 2001; 194:79-88.

34. Ogata H., Su I., Miyake K. et al. , The toll-like receptor protein RP105 regulates lipopolysaccharide signaling in B cells. J Exp Med 2000; 192:23-29.

35. Kawasaki K., Akashi S., Shimazu R. et al. Mouse tolllike receptor 4.MD-2 complex mediates lipopolysaccharide- mimetic signal transduction by Taxol. J Biol Chem 2000; 275:2251-2254.

36. Vabulas R.M., Wagner H., Schild H. Heat shock proteins as ligands of toll-like receptors. Curr Top Microbiol Immunol 2002; 270:169-184.

37. Gao B., Tsan M.F. Recombinant human heat shock protein 60 does not induce the release of tumor necrosis factor alpha from murine macrophages. J Biol Chem 2003; 278:22523-22529.

38. Wu H., Chen G., Wyburn K.R. et al. TLR4 activation mediates kidney ischemia/reperfusion injury. J Clin Invest 2007; 117:2847-2859.

39. Hayashi F., Smith K.D., Ozinsky A. et al. The innate immune response to bacterial flagellin is medi-ated by Toll-like receptor 5. Nature 2001; 410:1099-1103.

40. Gomez-Gomez L., Boller T. FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 2000; 5:1003- 1011.

41. Andersen-Nissen E., Smith K.D., Strobe K.L. et al. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc Natl Acad Sci USA 2005; 102:9247-9252.

42. Rhee S.H., Keates A.C., Moyer M.P., Pothoulakis C. MEK is a key modulator for TLR5-induced interleukin-8 and MIP3alpha gene expression in non-transformed human colonic epithelial cells. J Biol Chem 2004; 279:25179-188.

43. Tallant T., Deb A., Kar N. et al. Flagellin acting via TLR5 is the major activator of key signaling pathways leading to NF-kappa B and proin-flammatory gene program activation in intestinal epithe-lial cells. BMC Microbiol 2004; 4:33.

44. Gewirtz A.T., Simon P.O., Jr., Schmitt C.K. et al. Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response. J Clin Invest 2001; 107:99-109.

45. Zeng H., Carlson A.Q., Guo Y. et al. Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella. J Immunol 2003; 171:3668-3674.

46. Rhee S.H., Im E., Riegler M. et al. Pathophysiological role of Toll-like receptor 5 engagement by bacterial flagellin in colonic inflammation. Proc Natl Acad Sci USA 2005; 102:13610-13615.

47. Bambou J.C., Giraud A., Menard S. et al. In vitro and ex vivo activation of the TLR5 signaling pathway in intestinal epithelial cells by a commensal Escherichia coli strain. J Biol Chem 2004; 279:42984-42992.

48. Hawn T.R., Verbon A., Lettinga K.D. et al. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med 2003; 198:1563- 1572.

49. Zhang Z., Louboutin J.P., Weiner D.J. et al. Human airway epithelial cells sense Pseudomonas aeruginosa infection via recognition of flagellin by Tolllike receptor 5. Infect Immun 2005; 73:7151-7160.

50. Andersen-Nissen E., Hawn T.R., Smith K.D. et al. Cutting edge. Tlr5-/- mice are more susceptible to Escherichia coli urinary tract infection. J Immunol 2007; 178:4717-4720.

51. Tsuboi N., Yoshikai Y., Matsuo S. et al. Roles of toll-like receptors in C-C chemokine production by renal tubular epithelial cells. J Immunol 2002; 169:2026-2033.

52. Diebold S.S., Kaisho T., Hemmi H. et al. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004; 303:1529-1531.

53. Hemmi H., Kaisho T., Takeuchi O. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 2002; 3:196-200.

54. Heil F., Hemmi H., Hochrein H. et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004; 303:1526-1529.

55. Hemmi H., Takeuchi O., Kawai T. et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408:740-745.

56. Krieg A.M. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002; 20:709-760.

57. Elkins K.L., Rhinehart-Jones T.R., Stibitz S. et al. Bacterial DNA containing CpG motifs stimulates lymphocyte-dependent protection of mice against lethal infection with intracellular bacteria. J Immunol 1999; 162:2291- 2298.

58. Krieg A.M., Love-Homan L., Yi A.K., Harty J.T. CpG DNA induces sustained IL-12 expression in vivo and resistance to Listeria monocytogenes challenge. J Immunol 1998; 161:2428-2434.

59. Zimmermann S., Egeter O., Hausmann S. et al. CpG oligodeoxynu-cleotides trigger protective and curative Th1 responses in lethal murine leishmaniasis. J Immunol 1998; 160:3627-3630.

60. Latz E., Schoenemeyer A., Visintin A. et al. TLR9 signals after translocating from the ER to CpG DNA in the lys- osome. Nat Immunol 2004; 5:190-198.

61. Chang Y.J., Wu M.S., Lin J.T., Chen C.C. Helicobacter pylori-Induced invasion and angiogenesis of gastric cells is mediated by cyclooxygenase-2 induction through TLR2/TLR9 and promoter regulation. J Immunol 2005; 175:8242-8252.

62. Schmausser B., Andrulis M., Endrich S. et al. Expression and subcel-lular distribution of toll-like receptors TLR4, TLR5 and TLR9 on the gastric epithelium in Helicobacter pylori infection. Clin Exp Immunol 2004; 136:521-526.

63. Ewaschuk J.B., Backer J.L., Churchill T.A. et al. Surface expression of Toll-like receptor 9 is upregulated on intestinal epithelial cells in response to pathogenic bac- terial DNA. Infect Immun 2007; 75:2572-2579.

64. Lee J., Mo J.H., Katakura K. et al. Maintenance of colonic homeostasis by distinctive apical TLR9 signal- ling in intestinal epithelial cells. Nat Cell Biol 2006; 8:1327-1336.

65. Yarovinsky F., Zhang D., Andersen J.F. et al. TLR11 acti- vation of dendritic cells by a protozoan profilin-like protein. Science 2005; 308:1626-1629.

66. Zhang D., Zhang G., Hayden M.S. et al. A toll-like receptor that prevents infection by uropathogenic bac- teria. Science 2004; 303:1522-1526.

67. Zarember K.A., Godowski P.J. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol. 2002; 168:554-561.

68. Nishimura M., Naito S. Tissue-specific mRNA expres- sion profiles of human carbohydrate sulfotransferase and tyro-sylprotein sulfotransferase. Biol Pharm Bull. 2007; 30:821-825.

68a.Vandewalle A. Toll-like Receptors and Renal Bacterial Infections. Chang Gung Med J. 2008; 31(6):525-537.

69. Wornle M., Schmid H., Banas B. et al. Novel role of toll-like receptor 3 in hepatitis C-associated glomerulo- nephritis. Am J Pathol 2006; 168:370-385.

70. Wolfs T.G., Buurman W.A., van Schadewijk A. et al. In vivo expression of Toll-like receptor 2 and 4 by renal epithelial cells: IFN-gamma and TNF-alpha mediated up-regulation during inflammation. J Immunol 2002; 168:1286-1293.

71. Samuelsson P., Hang L., Wullt B. et al. Toll-like receptor 4 expression and cytokine responses in the human uri- nary tract mucosa. Infect Immun 2004; 72:3179-186.

72. El-AchkarT.M.,HuangX.,PlotkinZ.etal.Sepsisinduc- es changes in the expression and distribution of Toll-like receptor 4 in the rat kidney. Am J Physiol Renal Physiol 2006; 290:F1034-1043.

73. Hornef M.W., Frisan T., Vandewalle A. et al. Toll-like receptor 4 resides in the Golgi apparatus and colocal- izes with internalized lipopolysaccharide in intestinal epithelial cells. J Exp Med 2002; 195:559-570.

74. Chassin C., Goujon J.M., Darche S. et al. Renal col- lecting duct epithelial cells react to pyelonephritis-asso- ciated Escherichia coli by activating distinct TLR4- dependent and -independent inflammatory pathways. J Immunol 2006; 177:4773-4784.

75. Foxman B., Brown P. Epidemiology of urinary tract infections: transmission and risk factors, incidence, and costs. Infect Dis Clin North Am 2003; 17:227-241.

76. Johnson J.R., Russo T.A. Molecular epidemiology of extraintestinal pathogenic (uropathogenic) Escherichia coli. Int J Med Microbiol 2005; 295:383-404.

77. Foxman B., Barlow R., D’Arcy H. et al. Urinary tract infection: self-reported incidence and associ-ated costs. Ann Epidemiol 2000; 10:509-515.

78. Takai K., Aoki A., Suga A. et al. Urinary tract infections following renal transplantation. Transplant Proc 1998; 30:3140-141.

79. Schmaldienst S., Dittrich E., Horl W.H. Urinary tract infections after renal transplantation. Curr Opin Urol 2002; 12:125-130.

80. Goya N., Tanabe K., Iguchi Y. et al. Prevalence of uri- nary tract infection during outpatient follow-up after renal transplantation. Infection 1997; 25:101-105.

81. Pelle G., Vimont S., Levy P.P. et al. Acute pyelonephritis represents a risk factor impairing long-term kidney graft function. Am J Transplant 2007; 7:899-907.

82. Bergsten G., Wullt B., Svanborg C. Escherichia coli, fim-briae, bacterial persistence and host response induction in the human urinary tract. Int J Med Microbiol 2005; 295:487-502.

83. Frendeus B., Wachtler C., Hedlund M. et al. Escherichia coli P fimbriae utilize the Toll-like receptor 4 pathway for cell activation. Mol Microbiol 2001; 40:37-51.

84. Lane M.C., Mobley H.L. Role of P-fimbrial-mediated adherence in pyelonephritis and persistence of uro- patho-genic Escherichia coli (UPEC) in the mammalian kidney. Kidney Int 2007; 72:19-25.

85. Schilling J.D., Mulvey M.A., Vincent C.D. et al. Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-depen- dent mechanism. J Immunol 2001; 166:1148-1155.

86. Fischer H., Yamamoto M., Akira S. et al. Mechanism of pathogen-specific TLR4 activation in the mucosa: fimbri- ae, recognition receptors and adaptor protein selec- tion. Eur J Immunol. 2006; 36:267-277.

87. Gluba A., Banach M., Hannam S. et al. The role of Toll-like receptors in renal diseases. Nat Rev Nephrol. 2010; 6(4):224-235.